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Bi-Hamiltonian structure of N-component Kodama 
equations 
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Bilkent Univenity, Depanment of Malhematics, 06533 Bilkent, Ankara, 'hrkey 

Received 2 March 1992 

AbstracL We present a simple way of const~cting the second Hamiltonian operators for 
Ncompnent Kcdama equalions. Using dimensional analysis we are led to an ansa12 
for lhe Hamiltonian operator as well as the consewed quantities in terms of ratios 
of polynomials. ?he coefficients of these p l p a m i a l s  are determined from the Jacobi 
identities. The resulting bi-Hamillonian ~tmcture consists of generalization of Cavalcante 
and McKean's work for N = 2 and our earlier results for N = 3,4 .  

1. Introduction 

The Hamiltonian structure [l] of equations of hydrodynamic typeand their differential 
geometry were introduced by Dubrovin and Novikov in [2]. This theory was originally 
developed for systems arising from averaging the completely integrable nonlinear 
evolution equations such as the KdV and Sine-Gordon equations, by the Bogolyubov- 
Whitham averaging method. We refer to the recent expository article [3] and the 
extensive bibliography therein. 

On the other hand, two-component equations of hydrodynamic type consist of 
secondader  quasilinear partial differential equations which have been studied in the 
last three centuries. The foremost example of these. equations consists of the Eulerian 
equations of gas dynamics which Nutku [4] has shown to admit tri-Hamiltonian struc- 
ture. In subsequent papers [5,6] this structure was further investigated. Almost all 
two-component equations of hydrodynamic type have been realized in the generalized 
gas dynamics hierarchy with a t  least quadri-Hamiltonian structure, three of which are 
of hydrodynamic type and one is of third order. 

Yet another way of obtaining hydrodynamic-type equations has been introduced 
by Kodama [7] as a result of a reduction procedure applied to the dispersionless- 
KadomtsewPetviashvili equation 

which is also known as the Zabolostkaya-Khokhlov equation. The Kodama re- 
duction gives equations of hydrodynamic type in some auxiliary functions {d } ,  
i = 1,2, .  , . N .  In 1 + 1 dimensions these equations are defined by an N x N 
matrix v( U) 

U ;  = v; (U) U', 
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where we employ the summation convention over repeated indices, and the set of 
equations in the other time coordinate y is related to (2) in order to ensure the 
compatibility conditions. For each choice of matrix U@), these equations of hydro- 
dynamic type are used to construct a class of solutions of the Zabolostkaya-Khokhlov 
equation (71. 

Kodama has shown that the shallow-water equations are an example of such a 
system with 

and he proposed the following generalization: 

... u1 
0 U N  UN-1 ... 212 

U N  uN-l uN-3 

0 0 
(4) 

... U N  

for theN-component case. 
In [8], we have completed the generalized gas dynamics hierarchy by present- 

ing the missing equations in the hierarchy together with the Hamiltonian operators 
as well as the new infinite sets of conserved quantities. We have also started the 
multi-component systems by presenting the bi-Hamiltonian structure of N = 3,4 
cases in (4) and have conjectured that the N-component Kodama equations are 
bi-Hamiltonian systems. 

In this work we shall give a simple method of constructing the second Hamiltonian 
operator for the N-component Kodama equations (2) and (4). The construction will 
rely mainly on the dimensional analysis of the equations. This analysis will enable us 
to write an ansatz for an N x N matrix y 

(N-1 )u '  ( N  - 2)uZ ( N - 3 ) u 3  ... uN-1 

(N - l ) u 2  ( N  - 2)mZ2 ( N  -3)mZ3 ... ,2,N-? 

0 

( N - l ) u 3  ( ~ - 2 ) ~ ~ ~  ( N - s ) ~ ~ ~  . . .  
... 
... 

( N  - 1)uN-1 ( N  - 2)m2lN-' ( N  - 3)m3xN-' ... 
( N  - l ) u N  ( N  - 2)mN-'l2 ( N  - 3)mN-'J ... 

(5) 

which completely determines the second Hamiltonian operator (see (30)). The matrix 
y contains ( N  + 1)(N - 2)/2 unknown rational functions mij = myi. We shall 
show that the monomials in these functions can be determined by solving a linear 
Diophantine equation for the triple ( i , j , N )  in the set of positive integers and the 
construction of the second Hamiltonian operator is thereby reduced to the determina- 

these constants will be related to the partition functions of linear Diophantine equa- 
tions. For N = 2 the second Hamiltonian operator of shallow-water equations (3) 
follows from the definition of ansatz. Besides the examples which were already given 
in [SI, we shall work out the N = 5 case as a further illustration. 

+:-- -t +La - n f f i & n ~ t c  n C  +Lorn mnnr\m:sl~ frr\m nlnnhrnir enn~ntinnr I..I l.l...l_, , L U L L  U, L U G  WG*IIC,C,,W U, ,,,*ab . I I" I I" I I I .YIO .I Y... "16'Y.Y.- VY""..".."' T h e  nllmhrr nf 
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2. Kodama equations: first Hamiltonian structure 

Equation (2) combined witb (4) can be written as 
N - k  

U t  - I c u N - i U : + i  k = 1 , 2 , .  . . , N (6) k - 6 k j N U k  + 

i d  

which are indeed in the form of conservation !aw 

(7) 
a = aiQku; a. = - 

I au' 
with appropriate fluxes Q k ( u )  for the lcth equation, so that each component of the 
R-vector t u i )  is a conserved quantity. Moreover, we have the quadratic conserved 
quantity 

(8) H: = i g ( , ) i j u  i j  U 

where 
0 0 ... 0 1 
0 0 . . .  1 0  

with det(g(,)ij) = -1 , IS ' the metric tensor associated with the first Hamiltonian 
structure which we shall define below. The function H :  will serve as the lirst Hamil- 
tonian function for the second Hamiltonian structure. 

conservation laws 
n.ese e!e%ent2!y mr?se!Yed !penti!ies are evident if we m.n.sider the ae.roth-nrder 

dK(u)  dG(u) -=- 
d t  dx ' 

The elimination of the flux in (10) gives necessary conditions for the conserved 
densities 

akaiicvj = ajaircvi (11) 

which are trivially satisfied by uis and which follow from (9) for If:. 
The first Hamiltonian structure of N-component Kodama equations is an  imme- 

diate consequence of their conservative form and is defined by the constant-coellicient 
Hamiltonian operator 

. .  
with gy given by (9). The corresponding Hamiltonian function H i  can be obtained 
by solving the system of first-order partial differential equations 

0 )  

a. "k"2 ul - - Y(o)b i  ". . . . ni W ' 

aka,H: = q o ) i k  a,Q' = q 0 ) i k  

(!5) 

('4) 

The integrability conditions 

of (13) are satisfied and hence the first Hamiltonian structure is guaranteed. 
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3. Dimensional analysis 

For the Ncomponent Kodama equations we assign to the variable U' the dimension 

N > l  
. 2 N - 1 - i  

[U'] = N - 1  

so the highest dimension is WO and the lowest is one. We lind from the dimensional 
equations corresponding to (6) that [ z ]  - [t] = 1. Then in the Hamiltonian equations 
of motion 

the first-order hydrodynamic-type Hamiltonian operator Jl, or more precisely (cf [3]) 
~ y' in pj L&io-w, wq.uired ~~ bav.e dime-mions 

Z N - i - j  
N - 1  

[Jf'] = ('7) 

which are symmetric in i,j. We see immediately that for the upper-left triangle and 
cross-diagonal of J ,  we have 

1 < [ ~ f ' ] < 2  for i + j < ~ + 1  (18) 

O < [ J t ' ] < l  for i + j > N + l  (19) 

which indicates a linear dependence on xis, while for the lower-right triangle 

which is excluded by the range of [u'ls. In order to satisfy (19), we must either have 
an operator with zeros in the lower-right triangle, except 5:" which has constant 
coefficient, or introduce variables with dimension less than one. Obviously, the first 
case is a very restrictive class of Hamiltonian operators even without reference to any 
particular hydrodynamical system. Moreover, it is easy to prove that such an operator 
does not satisfy the Jacobi identities. 

Thus we are led to define the ratios of polynomials in U'. 'lb this end we note 
that the variables with a maximal number of different dimensions in between zcro 
and one can be obtained by defining the N - 2 ratios 

with dimensions satisfying 

1 N - 1 - i  N - 2  <- < 1 .  O < n  < [ € ' I =  N - l  N - l  

In fact, with these definitions we have a complete set of dimensions 

[constant], [ E ~ - ~ ] ,  [p3], . . . , [ ( ' I ,  [uN], . . . ,[U'] (22) 

ranging from zero to two in steps of 1/(N - 1). Note the absence of the quotient 
uN/uN- '  which has negative dimension. 
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So far we have clarified the dimensional considerations for why the second Hamil- 
tonian operator, not only for N = 3,4,  which we have given in [SI, but also for 
generic N ,  involves the inverse powers of u N - l .  These are manifestations of the 
restrictions imposed by the Jambi identities. 

Now we shall describe the construction of the ansatz for 5, with dimensions 
(17) and involving the polynomials in the variables ui ,  ti whose dimensions form a 
complete set. These rational polynomials will mntain the monomials of the form 

( d ) y U 2 ) 0 1  . . . (UN)""(E')"'(p)"'. . . ( p - 2 ) " -  0 $ a i ,  ai : integers 

(23) 

in a particular entry Jf' for given N .  The monomials (23) are required to satisfy the 
dimensional relations 

2 N -  i- j = 2 ( N  - 2 ) a , + .  . .+ (N  - l ) a N  + ( N  - 2 ) a 1  + . . . + 2 ( ~ ~ - ~  + a N - ? .  

(24) 

The number of different monomials in Jf' is the number of different sets of solutions 
{al,. . . , a N , a l , ,  . . of (24) for given i , j  and N. This is a problem of 
additive number theory concerning the representations of a given positive integer in 
the set of positive integers, and (24) is a linear Diophantine equation in this set. 
The required number of different solutions of (24) is called the partition function 
p ( 2 N  - i - j), and is generated by the product 

which is a formula due to Euler. The partition function depends on the sum i + j and 
hence the entries of J1 along the lines drawn parallel to the cross-diagonal involve 
the same monomials with unknown coefficients. The number of entries of J ,  having 
the same ansatz is given by 

i + i - 1  if i + j < N + 1  

2 N - ( i + j - l )  if i + j > N + 1  

corresponding to the upper-left triangle including cross-diagonal and the lower-right 
triangle, respectively. Thus, the total number of constants in a general ansatz for J ,  
will be 

N+1 2 N  

( i + j  - l ) p ( 2 N  - i - j )  -t ( 2 N  - i -j + l ) p ( 2 N  - i -j). (27) 
i t j = 2  i + j = N t 2  

However, the conditions on .J1 to define a Hamiltonian structure compatible with the 
first one have immediate consequences which we shall discuss in the next section. 
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4. Bi-Hamiltonian structure 

The analysis in the last section is sufficient to write an ansatz for a matrix of differ- 
ential operators having as many constants as given by (27). This operator is going 
to define the bi-Hamiltonian structure of the N-component Kodama equations pro- 
nded it gives (2) via (16), and it satisfies the Jacobi identities. We shall also require 
the second Hamiltonian operator to be compatible with (12). In particular, we can 
infer from the compatibility conditions that y" and y i l  must depend linearly on ui 
only. Surprisingly, this is also the restriction on the second Hamiltonian operator if 
we require the Hamiltonian structures for the N-component case to reduce to those 
of shallow-water equations [9] in the N = 2 limit. This limit is achieved by the 
transformations 

(Ul;U2:...: U N - 1 :  U N )  w (u1 ;  0 : .  . . ~ 0 :  U N )  (28) 

which produce singular Jacobians J for the transformations of Hamiltonian operators 
according to the rule 

J w J J J t .  (29) 

Evidently, we have found that the second Hamiltonian operators of Kodama 
equations arise from a framework where the integers a i  are all set to zero except one 
when i + j < N + 1 is satisfied. In this latter case all ais are zero. This reduces the 
number of unlolown constants greatly. We shall further give the N 2  of the constants 
in the ansatz as coefficients of the linear terms in ui and t i .  ?b this end we write 
the Hamiltonian operator J ,  in a suitable form 

using the N x N matrix y given, in the final form, by (5) with superscript 1 denoting 
the transpose. This form is an immediate consequence of the skew-adjointness on 
arbitrary matrix of first-order differential operators. In the differential-geometric 
terminology of Dubrovin and Novikov (30) is the Liouville-Poisson-type hydrodynamic 
operator defined on the N-dimensional phase spaces when the coordinates ui are 
conserved quantities [3]. 

Constructing the functions in y according to the procedure of the last section 
and determining the unknown constants from Jacobi identities we thus obtain the 
second Hamiltonian structure. Then by the celebrated theorem of Magri [IO] the bi- 

tities. For N-component Kcdama equations repeated application of the recurSiOn 
operator 

Eamiiioiiian strui-iure -m io piieiaie inficite aqiieaces mnriT& qudn- 

(31) 

give ( N  - 1) sets of infinities of these functions starting from the elementary conserved 
densities u i ,  i = 1,2 , .  . . , N - 1 with uN being the trivial Casimir for each N. AF 
we have shown in [SI for N = 2,3, the missing Nth sequence may start/end from a 
non-trivial Casimir. 
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From the dimension of the recursion operator we see that the ith set of conserved 
quantities start with the dimension [U'] and proceed by increasing the dimension by 
one at each recursive step. Thus the nth conserved quantity in the ith sequence have 
the dimension 

( n + 2 ) N  - ( n  + 1 ) -  i 
N - 1  

[ H i ]  = 

Accordingly we can write an ansatz for H:, and determine the constant coellicients 
of monomials from the conservation equation (10) instead of solving the recursion 
relations. The first sequence {If;} of conserved quantities which starts from U' 

consists of polynomials not containing the inverse powers of uN-l.  The Hamiltonian 
functions of the hi-Hamiltonian structure belong to this sequence. 

a/auN acts as the inverse of the recursion operator for each sequence. Thus once 
the ansatz for the nth function is solved the conserved densities previous to it can be 
obtained by applying a / a u N  repeatedly. 

-- ^^_^ ._.. ".:-.. ..c -- .."...-...A . I ..-- I.^_ ":-..,:c-,I 
LUG L U ' O L l U C L l U L l  U L  UJII>CL"LiU quarrlLrca 6 I U I L L I C I  >"rlp"'LcU by no:ing t k t  

5. &nmpie: ,XVT ~ 5 

The second Hamiltonian operators for 3- and 4-component Kodama equations were 
obtained in [SI. As a further example we consider the five-component case for which 
we have three rational variables t i ,  i = 1,2,3.  'lb determine the ansatz we look for 
the solutions of the equations 

10 - i -j = 3 a ,  + 2 a 2  + cr3 (33) 

for i + j = 2 , 3 , .  . . , l o ,  the last of which is trivial. Each different solution set 
{al,az,a3} will give a monomial in J;' when used as powers of ti. The number 
of these monomials will be determined from the Euler formula (25) 

( l - t ) - ' ( l - P - 1 ( 1 - i 3 ) - 1 =  l + t + 2 t 2 + 3 t 3 + 4 t 4 + 5 1 5 + 7 t 6 + 8 t i + " .  

(34) 

are (0,0,6), (0 ,1 ,4 ) ,  (0 ,2 ,2) ,  ( 0 , 3 , 0 ) ,  ( 1 , 0 , 3 ) ,  ( 1 , 1 , 1 ) ,  ( 2 , 0 , 0 ) .  The cor- 
from which we read that there are seven different solutions for i + j = I .  These 

rcayuIlu1"g "IuIIuIIIIaIa lllvurvrrrg ldll"llll " l l l d " I G 3  111 J ,  a,= " " L L I I I I ~ Y  "y W"'g LIIciJG 

numbers as exponents of tis. 'Ibgether with the linear dependence on u3 we get the 
following ansatz for J:' containing eight arbitrary constants: 

--"..--A:-- __-^- !-,- : ,..:-- -..*:-..", ..-L..t.,.." :.. 122 n__ ..*. ..:...,,, k.. .. *:.... .I.,.-.. 

J:' = R1U3 + a2( t3 )6  + a3t2(t3)4 + Q 4 ( < 2 ) 2 ( t 3 ) 2  + Q5({2)3 
(35) 1 2 3  + a6t ' ( t313  +a7€ € t + 

There is no other entry of J ,  with the same ansatz. Similarly, we obtain live ditkrent 
solutions of (33) for i + j = 5 and construct the monomials 
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for an ansatz for J,”2 and Jt3. After having the the form of entries with this 
essentially combinatoric procedure, it remains to determine the constants from the 
Jacobi identities. In spite of the great simplifications achieved by our knowledge of 
the entries of the Hamiltonian operator, this is a tedious algebraic computation. We 
give the final form of second Hamiltonian operator for the five-component Kodama 
equation 

8u1 7u2 6u3 5u4 4 u 5 )  

d 7u2 6m22 5m23 4m24 3m25 
J, = 611)” 5m23 4m33 3m34 2m35 - 

5u4 4m24 3m34 2m44 m45 dx 
4u5 3m25 2m35 m45 5 

where 

m22 - u3 - -- 1 ( d ) 2  u1u2u)” u’(u3)3 ( u 2 ) 2 ( u 3 ) 2  

(u4)4 
- 3  

(u4I4 2 ( u 4 ) 2  + 2- - - 
(U4))” 

1 (2))” u2( u3)4 5 (U96 - -~ 
( u ~ ) ~  6 ( ~ 4 ) ~  

+ -- 3 (U”)” + 

ulu2 Ul(U3)2 (u2)2u3 uZ(u3)3 (.3)5 
m23 = u4 - - 

m33=u5----  - -- 
(u4)2 (u4)2 (.4)3 4(u4)4 

u1u3 1 (u’)2 u2(u3)2 3 (.3)4 
m24 = u5 - - - -- 

U1 u2u3 1 (u3))” + -- 
U4 (U4)Z 3(u4)3 

u4 2 ( u 4 ) 2  U4 (u4)2 U4 , 

- 3  +- 
( u 4 ) 2  + (U”)” + (u4)3 (.4)4 (u4)5 

u1u3 ( u 2 ) 2  +3u2(u3)2 5 (.3)4 

(.4)2 2 (u4)2 + (.4)3 4(u4)4 
- -- 

211 u2u3 (u3))” 
m34 = - - 2-+- 

U4 (.4)2 (u4)3 ’ 
m25 - 

u2 (..3)2 m45 - U3 u2 1 ( U 3 l 2  m44 - -- - m35 = - - -- 

6. Conclusions 

We are witnessing an interesting hierarchy of Hamiltonian operators starting from 
N = 2 shallow-water structure. We believe that the combinatoric chdractcr of this 
paper Will be useful in the investigation of structures of the multicomponent Hamilto- 
nian systems in general. We have kept the construction more general than we needed 
for Kodama equations since it can be applied to any system where the variables 
admit scaling properties. The Jacobi identities are thereby reduced to an exercise 
in linear algebra for the determination of the unknown coelficients. Moreover, the 
construction of Hamiltonian operators with Hamiltonian functions involving rational 
polynomials now becomes an easy task. 
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